Solution-Mid-Exam

(1). (a) True

Justification: If $p: E \to X$ is a covering, then $p_*: \pi_1(E, e) \to \pi_1(X, p(e))$ is injective. By hypothesis, $p_*: \pi_1(E, e) \to \pi_1(X, p(e))$ is an isomorphism. This implies that p is a 1-sheeted covering and hence homeomorphism.

(b) False

Justification: Let X be the quotient space of \mathbb{S}^2 obtained by identifying (0,0,1) with (0,1,0). There exists a cell complex structure on \mathbb{S}^2 consisting of two 0-cells ((0,0,1) and (0,1,0)), one 1-cell, and one 2-cell (the remainder of the surface). By identifying (0,0,1) and (0,1,0) to a single point p, we get a corresponding cell complex structure of X consisting of:

- 0-skeleton: one point p;
- 1-skeleton: two 1-cells, α and β , with their endpoints identified to p;
- 2-skeleton: two 2-cells, with their boundaries identified to the path $\alpha \cdot \beta$.

Hence the 1-skeleton Y is homeomorphic to the wedge sum of two copies of \mathbb{S}^1 , and $\pi_1(Y, p)$ is free with generators $a = [\alpha]$ and $b = [\beta]$. The space X is obtained from Y by adding 2-cells, hence $\pi_1(X)$ is the quotient of $\pi_1(Y)$ by the relations $\partial e^2 = 1$ for each 2-cell e^2 . In our case, the two 2-cell give the same relation ab = 1 and we have:

$$\pi_1(X) = \langle a, b \mid ab = 1 \rangle = \langle a \rangle = \mathbb{Z}.$$

(c) True

Justification: Let $\phi : F_2 = \mathbb{Z} * \mathbb{Z} = \langle a, b \rangle \to S_3$ be the homomorphism satisfying $\phi(a) = (12)$ and $\phi(b) = (123)$. By the classification of covering spaces, there exists a covering $p : E \to \mathbb{S}^1 \vee \mathbb{S}^1$ which corresponds to the subgroup $Ker(\phi) \subseteq \pi_1(\mathbb{S}^1 \vee \mathbb{S}^1) \cong F_2$. Note that

$$Cov(E/\mathbb{S}^1 \vee \mathbb{S}^1) \cong F_2/Ker(\phi) \cong S_3.$$

(d) True

Justification: If $p: E \to B$ is the universal cover, then for every point

 $x \in B$, we have an evenly covered neighborhood U_x of x. The inclusion $i: U_x \hookrightarrow B$, by definition, lifts to E, so

$$i_*(\pi_1(U_x, x)) \subseteq p_*(\pi_1(E, \tilde{x})) = (1).$$

Therefore i_* is the trivial map. This implies that B is semi-locally simply connected.

(2). The function $H_1: Y \times I \to Y$ given by

$$H_1: ((x, y), t) = (x, (1 - 2t)y)$$

for $t \in [0, 1/2]$ and

$$H_1((x,y),t) = (2(1-t)x,0)$$

for $t \in [1/2, 1]$ is a homotopy between the identity map id_Y and the constant map $c_{(0,0)}$ at (0,0), since $H_1: Y \times I \to Y$ is continuous by Gluing Lemma, and

$$H_2((x, y), t) = (1 - t)(0, 0) + t(0, 1)$$

is a linear homotopy between the constant map $c_{(0,0)}$ at (0,0) and the constant map $c_{(0,1)}$ at (0,1). Then we define

$$F((x, y), s) = H_1((x, y), 2s)$$

for $s \in [0, 1/2]$ and

$$F((x, y), s) = H_2((x, y), 2s - 1)$$

for $s \in [1/2, 1]$ and represents a homotopy between the identity map id_Y and the constant map $c_{(0,1)}$ at (0, 1).

To establish the second claim, we assume, on the contrary, that there is a homotopy $F: Y \times I \to Y$ such that F(q, 0) = q, F(q, 1) = p = (0, 1) and F(p,t) = p, for all $t \in I = [0,1]$ and all $q \in Y$. Note that $Y \times [0,1]$ is compact and F is uniformly continuous. Consequently a $\delta > 0$ exists such that $|F(q,t) - p| < \frac{1}{2}$ for all $q \in Y$ and $|p - q| < \delta$ and all $t \in [0,1]$. Fix $q_0 = (\frac{1}{n_0}, 1)$ such that $n_0 > \frac{1}{\delta}$. Since the set $\{F(q_0, t) \mid 0 \leq t \leq 1\}$ is connected and moreover $F(q_0, 0) = q_0$ and $F(q_0, 1) = p$, there exists a $t_0 \in [0, 1]$ such that $F(q_0, t_0) = (\frac{1}{n_0}, 0)$. Thus $|F(q_0, t_0) - p| > 1$, contradiction. (3). (a) \Rightarrow (b) Let $H : \mathbb{S}^n \times I \to X$ be a homotopy of $f : \mathbb{S}^n \to X$ to a constant map. Then H defines a map $\overline{H} : C\mathbb{S}^n \to X$ such that $\overline{H} \circ q = H$, where CX is the quotient space of $X \times I$ obtained by identifying the subspace $X \times 0$ to a single point and $q : \mathbb{S}^n \times I \to C\mathbb{S}^n$ is the quotient map. Now consider the homeomorphism $\overline{P}^{-1} : \mathbb{D}^{n+1} \to C\mathbb{S}^n$ induced by the map $P : \mathbb{S}^n \times I \to \mathbb{D}^{n+1}$ given by $(x, t) \to tx$. The composite $\overline{f} = \overline{H} \circ \overline{P}^{-1}$ will do the job. (b) \Rightarrow (c) Suppose f can be extended to a map $\overline{f} : \mathbb{D}^{n+1} \to X$. Let $F : \mathbb{D}^{n+1} \times I \to \mathbb{D}^{n+1}$ be the relative homotopy of the identity map with

 $F: \mathbb{D}^{n+1} \times I \to \mathbb{D}^{n+1}$ be the relative homotopy of the identity map with the constant map x_0 viz., $(x,t) \to (1-t)x + tx_0$. Take the composite $\bar{f} \circ F: \mathbb{S}^n \times I \to X$. (c) \Rightarrow (a) Obvious.

(4). The covering projection $p: E \to X$ is called a regular covering (or a Galois covering or a normal covering) if the subgroup $p_*(\pi_1(E, \tilde{x}))$ is normal in $\pi_1(X, x)$.

Assume first that p is regular, and let α be a closed path in X based at x having a closed lifting $\tilde{\alpha}$ in E based at \tilde{x} . If $\tilde{\beta}$ is a lifting of α with $\tilde{\beta}(0) = \tilde{y}$, then $p(\tilde{x}) = x = p(\tilde{y})$ and the subgroups $p_*(\pi_1(E, \tilde{x}))$ and $p_*(\pi_1(E, \tilde{y}))$ are conjugate in $\pi_1(X, x)$). Since $p_*(\pi_1(E, \tilde{x}))$ is normal in $\pi_1(X, x)$, we have

$$p_*(\pi_1(E, \tilde{x})) = p_*(\pi_1(E, \tilde{y})).$$

Consequently,

$$[\alpha] = p_*(\widetilde{\alpha}) \in p_*(\pi_1(E, \widetilde{y}))$$

and so there exists a loop $\widetilde{\gamma}$ in E based at \widetilde{y} such that $p_*([\widetilde{\gamma}]) = [\alpha]$. It follows that $p \circ \widetilde{\beta} = \alpha$ is homotopic to $p \circ \widetilde{\gamma}$ rel $\{0, 1\}$. By the Monodromy Theorem, we see that $\widetilde{\beta}(1) = \widetilde{\gamma}(1) = \widetilde{y}$, and thus $\widetilde{\beta}$ is a closed path.

Conversely, suppose that either every lifting relative to p of a closed path in X is closed or none is closed. To see that p is regular, consider a subgroup $p_*(\pi_1(E, \tilde{x})) \subseteq \pi_1(X, x)$. Then a conjugate of $p_*(\pi_1(E, \tilde{x}))$ in $\pi_1(X, x)$ is the subgroup $p_*(\pi_1(E, \tilde{y}))$ for some $\tilde{y} \in p^{-1}(x)$. So it suffices to prove that

$$p_*(\pi_1(E, \tilde{x})) = p_*(\pi_1(E, \tilde{y}))$$

whenever $p(\tilde{x}) = p(\tilde{y})$. Let $[\tilde{\alpha}] \in \pi_1(E, \tilde{x})$. By the Path Lifting Property of p, there is a path $\tilde{\beta}$ in E with $p \circ \tilde{\beta} = p \circ \tilde{\alpha}$ and $\tilde{\beta}(0) = \tilde{y}$. Since $\tilde{\alpha}$ is a closed

lifting of $p \circ \tilde{\alpha}$, $\tilde{\beta}$ must be closed (by our assumption). Thus $[\tilde{\beta}] \in \pi_1(E, \tilde{y})$ and $p_*([\tilde{\beta}]) = p_*([\tilde{\alpha}])$. This implies that

$$p_*(\pi_1(E,\tilde{x})) \subseteq p_*(\pi_1(E,\tilde{y})).$$

Similarly

$$p_*(\pi_1(E,\tilde{y})) \subseteq p_*(\pi_1(E,\tilde{x})),$$

and the equality holds.

(5) Let $F_2 = \mathbb{Z} * \mathbb{Z}$ be the free product of two copies of \mathbb{Z} , the first copy generated by a and the second generated by b. Let $H = \ll \{a^4, ab, ba\} \gg$ be the normal closure of $\{a^4, ab, ba\}$ in F_2 . Claim:

$$F_2/H = K = \{H, aH, a^2H, a^3H\}.$$

We need only show that (aH)K = K and (bH)K = K. The first case is clear. One need to focus on the second case. For example,

$$(bH)(H) = bH = ba^4H = baa^3H = baHa^3 = Ha^3 = a^3H \in K.$$

Other cases are similar. So, F_2/H has 4 elements. This implies that H has index 4 in F_2 .