
Solution-Mid-Exam

(1). (a) True
Justification: If p : E → X is a covering, then p∗ : π1(E, e) → π1(X, p(e))
is injective. By hypothesis, p∗ : π1(E, e) → π1(X, p(e)) is an isomorphism.
This implies that p is a 1-sheeted covering and hence homeomorphism.

(b) False
Justification: Let X be the quotient space of S2 obtained by identifying
(0, 0, 1) with (0, 1, 0). There exists a cell complex structure on S2 consisting
of two 0-cells ((0, 0, 1) and (0, 1, 0)), one 1-cell, and one 2-cell (the remainder
of the surface). By identifying (0, 0, 1) and (0, 1, 0) to a single point p, we
get a corresponding cell complex structure of X consisting of:

• 0-skeleton: one point p;

• 1-skeleton: two 1-cells, α and β, with their endpoints identified to p;

• 2-skeleton: two 2-cells, with their boundaries identified to the path α·β.

Hence the 1-skeleton Y is homeomorphic to the wedge sum of two copies of
S1, and π1(Y, p) is free with generators a = [α] and b = [β]. The space X is
obtained from Y by adding 2-cells, hence π1(X) is the quotient of π1(Y ) by
the relations ∂e2 = 1 for each 2-cell e2. In our case, the two 2-cell give the
same relation ab = 1 and we have:

π1(X) =< a, b | ab = 1 >=< a >= Z.

(c) True
Justification: Let φ : F2 = Z ∗ Z =< a, b >→ S3 be the homomorphism
satisfying φ(a) = (12) and φ(b) = (123). By the classification of covering
spaces, there exists a covering p : E → S1 ∨ S1 which corresponds to the
subgroup Ker(φ) ⊆ π1(S1 ∨ S1) ∼= F2. Note that

Cov(E/S1 ∨ S1) ∼= F2/Ker(φ) ∼= S3.

(d) True
Justification: If p : E → B is the universal cover, then for every point



x ∈ B, we have an evenly covered neighborhood Ux of x. The inclusion
i : Ux ↪→ B, by definition, lifts to E, so

i∗(π1(Ux, x)) ⊆ p∗(π1(E, x̃)) = (1).

Therefore i∗ is the trivial map. This implies that B is semi-locally simply
connected.

(2). The function H1 : Y × I → Y given by

H1 : ((x, y), t) = (x, (1− 2t)y)

for t ∈ [0, 1/2] and
H1((x, y), t) = (2(1− t)x, 0)

for t ∈ [1/2, 1] is a homotopy between the identity map idY and the constant
map c(0,0) at (0, 0), since H1 : Y × I → Y is continuous by Gluing Lemma,
and

H2((x, y), t) = (1− t)(0, 0) + t(0, 1)

is a linear homotopy between the constant map c(0,0) at (0, 0) and the constant
map c(0,1) at (0, 1). Then we define

F ((x, y), s) = H1((x, y), 2s)

for s ∈ [0, 1/2] and

F ((x, y), s) = H2((x, y), 2s− 1)

for s ∈ [1/2, 1] and represents a homotopy between the identity map idY and
the constant map c(0,1) at (0, 1).
To establish the second claim, we assume, on the contrary, that there is a
homotopy F : Y × I → Y such that F (q, 0) = q, F (q, 1) = p = (0, 1) and
F (p, t) = p, for all t ∈ I = [0, 1] and all q ∈ Y . Note that Y × [0, 1] is
compact and F is uniformly continuous. Consequently a δ > 0 exists such
that |F (q, t) − p| < 1

2
for all q ∈ Y and |p − q| < δ and all t ∈ [0, 1]. Fix

q0 = ( 1
n0
, 1) such that n0 >

1
δ
. Since the set {F (q0, t) | 0 ≤ t ≤ 1} is con-

nected and moreover F (q0, 0) = q0 and F (q0, 1) = p, there exists a t0 ∈ [0, 1]
such that F (q0, t0) = ( 1

n0
, 0). Thus |F (q0, t0)− p| > 1, contradiction.



(3). (a)⇒ (b) Let H : Sn × I → X be a homotopy of f : Sn → X to a
constant map. Then H defines a map H : CSn → X such that H ◦ q = H,
where CX is the quotient space of X × I obtained by identifying the sub-
space X × 0 to a single point and q : Sn × I → CSn is the quotient map.

Now consider the homeomorphism P
−1

: Dn+1 → CSn induced by the map

P : Sn× I → Dn+1 given by (x, t)→ tx. The composite f̄ = H ◦P−1
will do

the job.
(b)⇒ (c) Suppose f can be extended to a map f̄ : Dn+1 → X. Let
F : Dn+1 × I → Dn+1 be the relative homotopy of the identity map with
the constant map x0 viz., (x, t) → (1 − t)x + tx0. Take the composite
f̄ ◦ F : Sn × I → X. (c)⇒ (a) Obvious.

(4). The covering projection p : E → X is called a regular covering (or a
Galois covering or a normal covering) if the subgroup p∗(π1(E, x̃)) is normal
in π1(X, x).

Assume first that p is regular, and let α be a closed path in X based at x
having a closed lifting α̃ in E based at x̃. If β̃ is a lifting of α with β̃(0) = ỹ,
then p(x̃) = x = p(ỹ) and the subgroups p∗(π1(E, x̃)) and p∗(π1(E, ỹ)) are
conjugate in π1(X, x)). Since p∗(π1(E, x̃)) is normal in π1(X, x)), we have

p∗(π1(E, x̃)) = p∗(π1(E, ỹ)).

Consequently,
[α] = p∗(α̃) ∈ p∗(π1(E, ỹ))

and so there exists a loop γ̃ in E based at ỹ such that p∗([γ̃]) = [α]. It follows

that p ◦ β̃ = α is homotopic to p ◦ γ̃ rel {0, 1}. By the Monodromy Theorem,

we see that β̃(1) = γ̃(1) = ỹ, and thus β̃ is a closed path.
Conversely, suppose that either every lifting relative to p of a closed path in
X is closed or none is closed. To see that p is regular, consider a subgroup
p∗(π1(E, x̃)) ⊆ π1(X, x). Then a conjugate of p∗(π1(E, x̃)) in π1(X, x) is the
subgroup p∗(π1(E, ỹ)) for some ỹ ∈ p−1(x). So it suffices to prove that

p∗(π1(E, x̃)) = p∗(π1(E, ỹ))

whenever p(x̃) = p(ỹ). Let [α̃] ∈ π1(E, x̃). By the Path Lifting Property of

p, there is a path β̃ in E with p ◦ β̃ = p ◦ α̃ and β̃(0) = ỹ. Since α̃ is a closed



lifting of p ◦ α̃, β̃ must be closed (by our assumption). Thus [β̃] ∈ π1(E, ỹ)

and p∗([β̃]) = p∗([α̃]). This implies that

p∗(π1(E, x̃)) ⊆ p∗(π1(E, ỹ)).

Similarly
p∗(π1(E, ỹ)) ⊆ p∗(π1(E, x̃)),

and the equality holds.

(5) Let F2 = Z ∗ Z be the free product of two copies of Z, the first copy
generated by a and the second generated by b. Let H =� {a4, ab, ba} � be
the normal closure of {a4, ab, ba} in F2.
Claim:

F2/H = K = {H, aH, a2H, a3H}.

We need only show that (aH)K = K and (bH)K = K. The first case is
clear. One need to focus on the second case. For example,

(bH)(H) = bH = ba4H = baa3H = baHa3 = Ha3 = a3H ∈ K.

Other cases are similar. So, F2/H has 4 elements. This implies that H has
index 4 in F2.


